Home Software Development Place of rightmost set bit

Place of rightmost set bit

0
Place of rightmost set bit

[ad_1]

Write a one-line perform to return the place of the primary 1 from proper to left, within the binary illustration of an Integer. 

Examples:

Enter: n = 18
Output: 2
Clarification: Binary Illustration of 18 is 010010, therefore place of first set bit from proper is 2.

Enter:  n = 19
Output: 1
Clarification: Binary Illustration of 19 is 010011, therefore place of first set bit from proper is 1.

Place of rightmost set bit utilizing two’s complement:

(n&~(n-1)) at all times return the binary quantity containing the rightmost set bit as 1. if N = 12 (1100) then it should return 4 (100). Right here log2 will return, the variety of occasions we will categorical that quantity in an influence of two. For all binary numbers containing solely the rightmost set bit as 1 like 2, 4, 8, 16, 32…. Discover that place of rightmost set bit is at all times equal to log2(Quantity) + 1.

Observe the steps to unravel the given drawback:

  • Let enter be 12 (1100)
  • Take two’s complement of the given no as all bits are reverted besides the primary ‘1’ from proper to left (0100)
  • Do a bit-wise & with unique no, this may return no with the required one solely (0100)
  • Take the log2 of the no, you’ll get (place – 1) (2)
  • Add 1 (3)

Under is the implementation of the above strategy:

C++

#embody <iostream>

#embody <math.h>

utilizing namespace std;

 

class gfg {

 

public:

    unsigned int getFirstSetBitPos(int n)

    {

        return log2(n & -n) + 1;

    }

};

 

int important()

{

    gfg g;

    int n = 18;

    cout << g.getFirstSetBitPos(n);

    return 0;

}

 

C

#embody <math.h>

#embody <stdio.h>

 

int important()

{

    int n = 18;

    int ans = log2(n & -n) + 1;

    printf("%d", ans);

    getchar();

    return 0;

}

Java

 

import java.io.*;

 

class GFG {

 

    public static int getFirstSetBitPos(int n)

    {

        return (int)((Math.log10(n & -n)) / Math.log10(2))

            + 1;

    }

 

    

    public static void important(String[] args)

    {

        int n = 18;

        System.out.println(getFirstSetBitPos(n));

    }

}

Python3

 

import math

 

 

def getFirstSetBitPos(n):

 

    return math.log2(n & -n)+1

 

 

 

n = 18

print(int(getFirstSetBitPos(n)))

 

C#

utilizing System;

 

class GFG {

    public static int getFirstSetBitPos(int n)

    {

        return (int)((Math.Log10(n & -n)) / Math.Log10(2))

            + 1;

    }

 

    

    public static void Most important()

    {

        int n = 18;

        Console.WriteLine(getFirstSetBitPos(n));

    }

}

 

PHP

<?php

 

perform getFirstSetBitPos($n)

{

    return ceil(log(($n& -

                     $n) + 1, 2));

}

 

$n = 18;

echo getFirstSetBitPos($n);

     

?>

Javascript

<script>

 

perform getFirstSetBitPos(n)

{

    return Math.log2(n & -n) + 1;

}

 

    let g;

    let n = 18;

    doc.write(getFirstSetBitPos(n));

 

</script>

Time Complexity: O(log2N), Time taken by log2 perform.
Auxiliary House: O(1)

Place of rightmost set bit utilizing ffs() perform:

ffs() perform returns the index of first least important set bit. The indexing begins in ffs() perform from 1. 
Illustration:

Enter: N = 12

Binary Illustration of 12 is 1100

ffs(N) returns the rightmost set bit index which is 3

Under is the implementation of the above strategy:

C++

#embody <bits/stdc++.h>

utilizing namespace std;

 

int getFirstSetBitPos(int n) { return ffs(n); }

 

int important()

{

    int n = 18;

    cout << getFirstSetBitPos(n) << endl;

    return 0;

}

Java

import java.util.*;

 

class GFG {

 

    

    

    static int getFirstSetBitPos(int n)

    {

        return (int)((Math.log10(n & -n)) / Math.log10(2))

            + 1;

    }

 

    

    public static void important(String[] args)

    {

        int n = 18;

        System.out.print(getFirstSetBitPos(n));

    }

}

 

Python3

import math

 

 

 

def getFirstSetBitPos(n):

 

    return int(math.log2(n & -n) + 1)

 

 

if __name__ == '__main__':

 

    n = 18

    print(getFirstSetBitPos(n))

 

C#

utilizing System;

public class GFG {

 

    

    

    static int getFirstSetBitPos(int n)

    {

        return (int)((Math.Log10(n & -n)) / Math.Log10(2))

            + 1;

    }

 

    

    public static void Most important(String[] args)

    {

        int n = 18;

        Console.Write(getFirstSetBitPos(n));

    }

}

 

Javascript

<script>

 

 

perform getFirstSetBitPos(n)

{

    return Math.log2(n & -n) + 1;

}

 

     

    let n = 18;

    doc.write( getFirstSetBitPos(n));

 

</script>

Time Complexity: O(log2N), Time taken by ffs() perform.
Auxiliary House: O(1)

Place of rightmost set bit utilizing  & operator:

Observe the steps under to unravel the issue:

  • Initialize m as 1 as verify its XOR with the bits ranging from the rightmost bit. 
  • Left shift m by one until we discover the primary set bit 
  • as the primary set bit offers a quantity after we carry out a & operation with m. 

Under is the implementation of above strategy:

C++

#embody <bits/stdc++.h>

utilizing namespace std;

 

int PositionRightmostSetbit(int n)

{

    if (n == 0)

        return 0;

    

    

    int place = 1;

    int m = 1;

 

    whereas (!(n & m)) {

 

        

        m = m << 1;

        place++;

    }

    return place;

}

int important()

{

    int n = 18;

    

    cout << PositionRightmostSetbit(n);

    return 0;

}

Java

 

class GFG {

 

    

    

    static int PositionRightmostSetbit(int n)

    {

        

        

        

        int place = 1;

        int m = 1;

 

        whereas ((n & m) == 0) {

 

            

            m = m << 1;

            place++;

        }

        return place;

    }

 

    

    public static void important(String[] args)

    {

        int n = 18;

 

        

        System.out.println(PositionRightmostSetbit(n));

    }

}

 

Python3

 

 

 

def PositionRightmostSetbit(n):

 

    

    

    

    place = 1

    m = 1

 

    whereas (not(n & m)):

 

        

        m = m << 1

        place += 1

 

    return place

 

 

n = 18

 

print(PositionRightmostSetbit(n))

 

C#

utilizing System;

 

class GFG {

 

    

    

    static int PositionRightmostSetbit(int n)

    {

        

        

        

        int place = 1;

        int m = 1;

 

        whereas ((n & m) == 0) {

 

            

            m = m << 1;

            place++;

        }

        return place;

    }

 

    

    static public void Most important()

    {

        int n = 18;

 

        

        Console.WriteLine(PositionRightmostSetbit(n));

    }

}

 

PHP

<?php

 

perform PositionRightmostSetbit($n)

{

    

    

    

    $place = 1;

    $m = 1;

 

    whereas (!($n & $m))

    {

 

        

        $m = $m << 1;

        $place++;

    }

    return $place;

}

 

$n = 18;

 

echo PositionRightmostSetbit($n);

     

?>

Javascript

<script>

 

    

    

 

    

    perform PositionRightmostSetbit(n)

    {

     

        

        

        let place = 1;

        let m = 1;

 

        whereas ((n & m) == 0) {

 

            

            m = m << 1;

            place++;

        }

        return place;

    }

 

    let n = 18;

     

    

    doc.write(PositionRightmostSetbit(n));

     

    

</script>

Time Complexity: O(log2N), Traversing by means of all of the bits of N, the place at max there are logN bits.
Auxiliary House: O(1)

Place of rightmost set bit utilizing Left Shift(<<):

Observe the steps under to unravel the issue:

  • Initialize pos with 1 
  • iterate as much as INT_SIZE(Right here 32) 
  • verify whether or not bit is about or not 
  • if bit is about then break the loop
  • else increment the pos.  

Under is the implementation of the above strategy:

C++

#embody <iostream>

utilizing namespace std;

#outline INT_SIZE 32

 

int Right_most_setbit(int num)

{

    if (num == 0)

    {

        return 0;

    }

    else {

        int pos = 1;

        

        for (int i = 0; i < INT_SIZE; i++) {

            if (!(num & (1 << i)))

                pos++;

            else

                break;

        }

        return pos;

    }

}

int important()

{

    int num = 18;

    int pos = Right_most_setbit(num);

    cout << pos << endl;

    return 0;

}

Java

public class GFG {

 

    static int INT_SIZE = 32;

 

    static int Right_most_setbit(int num)

    {

        int pos = 1;

        

        for (int i = 0; i < INT_SIZE; i++) {

            if ((num & (1 << i)) == 0)

                pos++;

 

            else

                break;

        }

        return pos;

    }

 

    

    public static void important(String[] args)

    {

 

        int num = 18;

        int pos = Right_most_setbit(num);

        System.out.println(pos);

    }

}

Python3

 

INT_SIZE = 32

 

 

def Right_most_setbit(num):

 

    pos = 1

 

    

    for i in vary(INT_SIZE):

        if not(num & (1 << i)):

            pos += 1

        else:

            break

 

    return pos

 

 

if __name__ == "__main__":

 

    num = 18

    pos = Right_most_setbit(num)

    print(pos)

 

C#

utilizing System;

 

class GFG {

 

    static int INT_SIZE = 32;

 

    static int Right_most_setbit(int num)

    {

        int pos = 1;

 

        

        

        for (int i = 0; i < INT_SIZE; i++) {

            if ((num & (1 << i)) == 0)

                pos++;

 

            else

                break;

        }

        return pos;

    }

 

    

    static public void Most important()

    {

        int num = 18;

        int pos = Right_most_setbit(num);

        Console.WriteLine(pos);

    }

}

PHP

<?php

 

perform Right_most_setbit($num)

{

    $pos = 1;

    $INT_SIZE = 32;

     

    

    

    for ($i = 0; $i < $INT_SIZE; $i++)

    {

        if (!($num & (1 << $i)))

            $pos++;

        else

            break;

    }

    return $pos;

}

 

$num = 18;

$pos = Right_most_setbit($num);

echo $pos;

echo ("n")

 

?>

Javascript

<script>

 

let INT_SIZE = 32;

 

perform Right_most_setbit(num)

{

    let pos = 1;

     

    

    for(let i = 0; i < INT_SIZE; i++)

    {

        if ((num & (1 << i)) == 0)

            pos++;

        else

            break;

    }

    return pos;

}

 

let num = 18;

let pos = Right_most_setbit(num);

 

doc.write(pos);

 

 

</script>

Time Complexity: O(log2n), Traversing by means of all of the bits of N, the place at max there are logN bits.
Auxiliary House: O(1)

Place of rightmost set bit utilizing Proper Shift(>>):

Observe the steps under to unravel the issue:

  • Initialize pos=1. 
  • Iterate until quantity>0,  at every step verify if the final bit is about. 
  • If final bit is about, return present place 
  • else increment pos by 1 and proper shift n by 1.

Under is the implementation of the above strategy:

C++

#embody <bits/stdc++.h>

utilizing namespace std;

 

int PositionRightmostSetbit(int n)

{

    int p = 1;

 

    

    whereas (n > 0) {

 

        

        if (n & 1) {

            return p;

        }

 

        

        p++;

        n = n >> 1;

    }

 

    

    return -1;

}

 

int important()

{

    int n = 18;

 

    

    int pos = PositionRightmostSetbit(n);

 

    if (pos != -1)

        cout << pos;

    else

        cout << 0;

 

    return 0;

}

 

Java

import java.io.*;

 

class GFG {

 

    

    

    public static int Last_set_bit(int n)

    {

        int p = 1;

 

        

        whereas (n > 0) {

 

            

            if ((n & 1) > 0) {

                return p;

            }

 

            

            

            p++;

            n = n >> 1;

        }

 

        

        return -1;

    }

 

    

    public static void important(String[] args)

    {

        int n = 18;

 

        

        int pos = Last_set_bit(n);

 

        if (pos != -1)

            System.out.println(pos);

        else

            System.out.println("0");

    }

}

 

Python3

 

 

 

def PositionRightmostSetbit(n):

    p = 1

 

    

    whereas(n > 0):

 

        

        if(n & 1):

            return p

 

        

        p += 1

        n = n >> 1

 

    

    return -1

 

 

n = 18

pos = PositionRightmostSetbit(n)

if(pos != -1):

    print(pos)

else:

    print(0)

 

C#

utilizing System;

 

class GFG {

 

    

    

    public static int Last_set_bit(int n)

    {

        int p = 1;

 

        

        whereas (n > 0) {

 

            

            if ((n & 1) > 0) {

                return p;

            }

 

            

            

            p++;

            n = n >> 1;

        }

 

        

        return -1;

    }

 

    

    public static void Most important(string[] args)

    {

        int n = 18;

 

        

        int pos = Last_set_bit(n);

 

        if (pos != -1)

            Console.WriteLine(pos);

        else

            Console.WriteLine("0");

    }

}

 

Javascript

<script>

 

 

perform Last_set_bit(n)

{

    let p = 1;

     

    

    whereas (n > 0)

    {

         

        

        if ((n & 1) > 0)

        {

            return p;

        }

         

        

        

        p++;

        n = n >> 1;

    }

     

    

    return -1;

}

 

let n = 18;

 

let pos = Last_set_bit(n);

 

if (pos != -1)

{

    doc.write(pos);

}

else

{

    doc.write(0);

}

     

 

</script>

C

#embody <stdio.h>

 

int Last_set_bit(int n)

{

    int p = 1;

 

    

    whereas (n > 0) {

 

        

        if ((n & 1) > 0) {

            return p;

        }

 

        

        

        p++;

        n = n >> 1;

    }

 

    

    return -1;

}

 

int important(void)

{

    int n = 18;

 

    

    int pos = Last_set_bit(n);

 

    if (pos != -1)

        printf("%dn", pos);

    else

        printf("0n");

 

    return 0;

}

Time Complexity: O(log2n), Traversing by means of all of the bits of N, the place at max there are logN bits.
Auxiliary House: O(1)

Final Up to date :
14 Apr, 2023

Like Article

Save Article

[ad_2]